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Abstract

The paper describes the results of the evolution-
ary development of a real, neural-network driven
mobile robot. The evolutionary approach to the
development of neural controllers for autonomous
agents has been successfully used by many re-
searchers, but most -if not all- studies have been
carried out with computer simulations. Instead,
in this research the whole evolutionary process
takes places entirely on a real robot without hu-
man intervention. Although the experiments de-
scribed here tackle a simple task of navigation
and obstacle avoidance, we show a number of
emergent phenomena that are characteristic of au-
tonomous agents. The neural controllers of the
evolved best individuals display a full exploitation
of non-linear and recurrent connections that make
them more e�cient than analogous man-designed
agents. In order to fully understand and describe
the robot behavior, we have also employed quan-
titative ethological tools [13], and showed that the
adaptation dynamics conform to predictions made
for animals.

1 Introduction

A mechanical device that can operate without being at-
tached to a power supply or an external computer is not
necessarily an autonomous robot. Although this may
be an additional desirable feature, autonomous robots
are rather identi�ed by their ability to adapt to an en-
vironment by �nding optimal solutions, develop a suit-
able control system, de�ne their own goals, and, possi-
bly, perform some self-monitoring [19]. All these capa-
bilities cannot be pre-de�ned, but should rather emerge
from the interaction between the robot and its own en-
vironment. A possible solution for building autonomous
systems consists in using simple components and prim-
itive structures for the control system; in this case, ar-
ticulated and complex behaviors would be the sponta-
neous result of the interactions among all these parts

through a process of self-organization guided by a con-
tinuous exchange of information with the environment.
Major steps in this direction have already been taken.
Brooks's subsumption architecture [4] is indeed a case of
constructive, bottom-up approach toward building au-
tonomous robots that display emergent behaviors. His
approach consists of providing the robot with a set of
simple behaviors; further behavior-modules can be added
on the top of these primitives and connected to them
via simple excitatory or inhibitory links. A similar ap-
proach has been formulated by Steels [19], who is pursu-
ing the goal of building intelligent agents by focusing
on action-centered skills, autonomy, behavior-oriented
decomposition, emergent functionality, and layered ar-
chitectures. In a more general context, Maes [11] has
tried to de�ne the theory, methodology, and goals of a
new Behavior-Based Arti�cial Intelligence, as contrasted
to the Knowledge-Based Arti�cial Intelligence. Beside
these solutions, some other researchers have ful�lled the
requirements of learning and adaptation by employing
various sorts of neural networks to control a robotic sys-
tem [2], [20]; whether pre-wired or plastic, these neural
controllers exhibit characteristics of generalization, 
ex-
ibility, robustness, and, possibly, plastic adaptation. All
these features are indeed important prerequisites of au-
tonomous agents. A somehow di�erent step toward de-
sign automatization of autonomous robots is taken by
those researchers that try to evolve the robot control
system. Rather than starting from a designed solution,
they describe the primitives of the robot in the form of an
arti�cial chromosome, build many of these chromosome
with some random arrangement of the genes, test the
control system generated with every chromosome on a
robot, select and reproduce only those chromosomes that
guarantee the robot a better �tness according to some
survival criterion; this process is repeated until the aver-
age population performance is good enough or some mu-
tant with exceptional characteristics is born. Although
the evolutionary procedure [9], [7] is well known to a
vast community of researchers, it is not a straightfor-



ward task to apply it to real robots, as we will see later.
Our work concerns the evolution of a neural-network-
controlled mobile robot. What is really important in our
experiments is that the whole evolutionary process takes
places entirely on a real robot without human interven-
tion. Before going into the description of our results and
the following discussion, let us stress two points that we
think to be of general relevance, namely the choice of
a neural architecture and the role of simulations versus
real implementations.

2 Neural Architectures

Arti�cial neural networks seem to us to be particularly
good candidates for the control system of arti�cial au-
tonomous agents because they possess many desirable
features required by the principles of autonomy in real
environments (see also [8]). Let us list some of these
properties.

� Neural networks are 
exible. The ability to learn
enables dynamic adaptation of robot behavior to
changes in the environment. Even when the synapses
are not modi�able, a neural network still exhibits a
reasonable degree of 
exibility, i.e., it is able to pro-
duce appropriate behaviors in response to a range of
possible variations of the physical stimulation.

� Arti�cial neural networks are robust: missing links
or malfunctioning of some hardware components do
not strongly impair the robot's behavior.

� A neural network deals with the micro-structure of
the robot: this means that it can either shape its
own structure to exploit at its best the sensory-motor
features of the robot [5], or actively select and use
only those sensors and motors that are best suited
for performing the task [16].

� The well known tolerance to noise (in some cases
noise enhances performance [17], or is an essential
component for learning, such as in self-organizing
neural networks) makes them good candidates for
mediating between physical sensors and actuators
with intrinsic noise.

� If we do not put limits to the network architecture,
and thus have recurrent and lateral connections, and
non-linear transfer functions, we have a potentially
powerful device that could cope with the temporal
structure and complex mappings required by real-
world operations.

Finally, arti�cial neural networks are well-suited struc-
tures also for arti�cial evolution. Small changes in a neu-
ral network usually correspond to small changes in its be-
havior, at least for feed-forward architectures. Genetic
algorithms �nd their way toward a maximum by sam-
pling new solutions obtained by random combinations

and mutations, and thus take advantage of the intrinsic
"gradualism\ of the neural network structure.

3 Simulation versus Implementation

There is currently a hot debate among people trying
to understand and reproduce intelligent agents, that
could be stated as follows: "Is the simulation a pow-
erful enough tool to draw sound conclusions, or should a
theory or an approach be tested on a real agent, i.e., a
robot>` Although both numerical simulations and phys-
ical implementations have their own merits in di�erent
�elds of research, the issue becomes important when we
investigate autonomous and intelligent agents. Let us
examine in more detail the respective advantages and
drawbacks of these two methodologies in our particular
case. It is usually argued that computer simulations are
fast. High performance serial machines and massively
parallel computers nowadays are powerful tools for the
virtual reproduction and analysis of complex-system dy-
namics. In a few days of computation the scientist can
reproduce birth and death of whole populations of or-
ganisms (see, e.g., [1]). But this holds only to a limited
level of sophistication. It is still much faster to have
a real camera acquiring images from a real world than
simulating the world, the camera, and the image acqui-
sition process (see [8]). This is not a problem of "bot-
tlenecks\, but it is due to the fact that enormous cal-
culations are sometimes necessary for simulating a very
trivial 1 physical phenomenon, partly because comput-
ers are general-purpose machines whereas natural devices
are "dedicated hardware\. Another common belief is
that computer simulations are cheaper. The researcher
may think that it is worth exploring a hypothesis or a
new algorithm by computer simulations before investing
money and time in a robot. Although this may be true
in many situations, in some cases it is not. It all depends
on the degree of plausibility and "reality\ of the simu-
lation. If the standard is intended to be high, then it
is very likely that it will involve one or more specialized
programmers on the project for many months. Some-
times, this may cost more than building, purchasing, or
modifying real robots. It is widely accepted that nu-
merical simulations allow complete control and record of
all the variables; it is thus possible to replicate results,
analyze phenomena, accelerate or slow down processes.
This is certainly true. But why should we have complete
control over an autonomous agent? After all, an arti-
�cial agent will never be truly autonomous while there
is an umbilical chord that limits its �eld of action Au-
tonomous agents living within a computer are limited
by the necessarily-prede�ned number of experiences and
levels of interactions with the environment. If we are to
build intelligent autonomous agents, then we will have to

1Here "trivial\ is meant in a naive sense, as opposed to number

of processes or complexity of the dynamics involved



give up -sooner or later- with the obsession of controlling
and replicating every possible accident. Computer sim-
ulations are still a powerful tool for our research. They
provide a viable solution for experimenting non-existing
devices or non feasible (with physical tools) hypotheses
about the nature and characteristics of arti�cial agents.
"Life as it could be\ is indeed one of the major topics of
Arti�cial Life [10], a �eld of investigation that much in-
spires research in autonomous agents. Computers leave
us free to use our imagination and test the most bizarre
hypotheses to recreate new autonomous organisms living
and behaving within worlds with di�erent physical laws.
However, when we simulate something we must always
be aware that we are putting some constraint somewhere
at some level. It is not anymore the real world that we
are dealing with. And this may be a crucial point when
trying to create an autonomous system. By de�nition,
an autonomous agent itself will de�ne the level of inter-
action with its own environment and alone will choose
the relevant information to take into consideration. If
we are to restrict at some point the range of available
possibilities, we may hamper or greatly reduce the po-
tentiality of our agent. One of the strongest critics made
against the simulative approach is that numerical simu-
lations do not consider all the physical laws of the inter-
action of a real agent with its own environment, such as
mass, weight, friction, inertia, etc. Although this may be
questionable, it is certainly true that simulations do not
take into account Murphy's Laws, such as malfunction-
ing, component failures, and consumption that govern
both arti�cial and biological organisms. Finally, a real
danger with computer simulations is that it cannot be
guaranteed that a transfer to the implementation phase
will be smooth, if feasible at all. But, let us imagine this
to be possible. Who will guarantee to us, then, that the
robot is actually doing what it was doing in the simu-
lations? How to compare precise numerical values with
behavioral data collected in a noisy world? This is es-
pecially important for those researchers who develop the
control system of the robot with a computer simulation,
and then "inject\ the resulting "brain\ into the proces-
sor of their physical agent and leave it free to move. The
analysis and discussion of the reasons why one method
should be preferred over the other may take much longer;
here, we have only tried to outline a few important topics
that we felt relevant for our methodology.

3.1 Evolutionary Development of a Physical

Robot

But, for what concerns our speci�c research, there is a
more compelling question. Why are several groups work-
ing on simulations, but it is hard -or even impossible- to
�nd cases of generational development of populations of
real robots, that is, robots that must survive in a real
world on the basis of some �tness criterion, where only

the �ttest can mate and reproduce through a genera-
tional and cyclic process? We believe that the reason is
not the cost and waste of material (not �tted robots), or
di�culties with the mating procedure, but it is rather
based on the construction principles of robots. Most
of the available robots are not suited for evolution, in
terms of mechanical robustness, design concepts, and au-
tomatic evaluation of the robot performance:

� Evolution (Genetic Algorithms) takes a long time;
it may require hours, days, weeks, or even months,
of continuous functioning of the hardware. Most of
available robots tend to break down in these condi-
tions and are not capable of self-repair, as biological
organisms often do.

� The common philosophy underlying the construction
of robots designed for operating in autonomy dictates
that many precise and sophisticated sensory devices
should be mounted on the main board. The me-
chanical solutions for moving around and performing
other actions are taken either from well established
engineering solutions (three wheel synchronous drive,
for instance), or from successful biological organisms
(stick insects, ants, etc.). This leads to the construc-
tion of complex, highly structured, and fragile mech-
anisms. For this reason, such robots would easily get
trapped in corners and local minima during the �rst
generations of the evolutionary process. Whereas
there is no reason in principle why the evolutionary
technique should not be applicable to complex robots
(and indeed it will have to, at least to some extent),
it is de�nitely true that biological evolution did not
start with a structured and sophisticated body cou-
pled with a virtually non-existing brain. Evolution-
ary studies have shown that there is a gradual co-
evolution of body and "mind\ in biological organisms.
Thus, either we start with a robot designed with new
principles (simple components and geometry, robust
and reliable hardware, only necessary and elemen-
tary sensors and actuators), or we provide a complex
robot with a set of "basic instincts\ (but which?) and
let evolution work on higher control structures. We
have chosen the �rst approach because we consider it
to be chronologically and logically the �rst thing to
try, and also because the second solution, although
viable in principle, may still be problematic at this
stage.

� In order to get a sensible behavior out of a tabula

rasa (whatever type of architecture we use), Genetic
Algorithms require a �tness function, i.e., a survival
criterion against which each individual of the popu-
lation is tested. As long as the arti�cial agent is a
virtual entity within a computer it is fairly easy to
precisely evaluate its performance. However, when
the agent takes form into a physical and mobile body



free to wander in our world, automatic �tness evalu-
ation becomes a non-trivial task. We will take into
consideration this issue in a later section.

4 Navigation and Obstacle Avoidance

Because of all the reasons outlined in the section above,
we were not certain that the evolutionary approach
would have worked with a real robot. Mainly, we did
not know how to assess and compare the results that we
could have obtained with this approach. Thus, we have
decided to start from a classic task, a sort of exercise
and test for all people working with mobile robots. The
robot had to learn to move in an environment and avoid
obstacles. For its simplest formulation, there is already a
well-known, optimal, and simple distributed solution for
this task: the Braitenberg's vehicle [3], with which we
have compared our results. Thus, we have put our robot
in an arbitrary environment, set a few parameters con-
cerning the �tness function and the network structure,
and let it free to evolve. We have run this experiment
many times in order to obtain reliable data and draw
sound conclusions. Each time, we have kept track of a
some relevant variables during the evolutionary process,
analyzed the best organisms, and compared the solutions
obtained by evolution with those designed by man.

4.1 Experimental Setup

The robot employed in our experiments is Khepera, a
miniature mobile robot [14]. Khepera has many of the
characteristics required by the evolutionary approach to
autonomous robots. It has a circular shape (Figure 1),
with diameter of 55 mm, height of 30 mm, and weight
of 70 g, and is supported by two wheels and two small
Te
on balls.

The wheels are controlled by two DC motors with in-
cremental encoder (10 pulses per mm of advancement of
the robot), and can move in both directions. The simple
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Figure 1: Khepera, the miniature mobile robot.
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Figure 2: Operating methodology.

geometrical shape and the motor layout allow Khepera
to potentially negotiate any type of obstacle and corner.
These characteristics, together with many other mechan-
ical solutions, have resulted in a robot that has contin-
uously and reliably operated for weeks and weeks, most
of the time crashing into walls and obstacles (due to the
functioning principles of Genetic Algorithms). In the
basic con�guration used here, the robot is provided with
eight Infra-Red proximity sensors. Six sensors are po-
sitioned on one side of the robot (front), the remaining
two on the other side (back). A Motorola 68331 con-
troller with 256 Kbytes of RAM and 512 Kbytes ROM
manages all the input-output routines and can commu-
nicate via a serial port with a host computer.

Because of its size and design principles, Khepera is
well-suited for laboratory experiments. Its communi-
cation protocol can exploit all the power and disk size
available in a workstation by letting high-level control
processes (genetic operators, neural network activation,
variables recordings) run on the main station while low-
level processes (sensor-reading, motor control, and other
real time tasks) run on the on-board processor (Figure 2).

We have adopted this solution for our experiments.
Khepera was attached via a serial port to a Sun Sparc-
Station 2 by means of a lightweight aerial cable and spe-
cially designed rotating contacts. In this way, while the
robot was running, we could keep track of all the popula-
tions of organisms that were born, tested, and passed to
the genetic operators, together with their "personal life
�les\. At the same time, we could also take advantage of
speci�c software designed for graphic visualization of tra-
jectories and sensory-motor status while the robot was
evolving. Skeptics should not consider this methodol-
ogy as an attempt on the very hearth of autonomy: as
stated in the very beginning of this paper, running with
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Figure 3: Environment of the experiment.

its own batteries is only an optional feature of an au-
tonomous agent. For what concerns Khepera, the robot
is not aware of where its own "brain\ is located, and
this is indeed not important in this experiment of nav-
igation and obstacle avoidance. However, it should be
noted that the software that implements the genetic de-
velopment of neural networks [6] could be slimmed down
and downloaded into the robot processor.

The robot was put in an environment consisting in a
sort of circular corridor whose external size was approx.
80x50 cm large (Figure 3). The walls were made of light-
blue polystyrene and the 
oor was a gray thick paper.
The robot could sense the walls with the IR proximity
sensors. Since the corridors were rather narrow (8-12
cm), some sensors were slightly active most of the time.
The environment was within a portable box positioned
in a room always illuminated from above by a 60-watt
bulb light. A serial cable connected the robot to the
workstation in our o�ce, a few rooms away from it. Our
goal was to develop a robot that could learn to maximize
some sort of exploration measure while accurately avoid-
ing all the obstacles on its way. This statement was also
the base for the �tness criterion used in the experiments.
One of the desirable features of autonomous robots is the
independence from an external operator, also during the
development process of the control system. This would
mean that the performance criterion for an autonomous
agent should rely solely on a set of variables that can
be measured within the frame of interaction between the
robot and the environment. If this constraint is satis-
�ed, we achieve a practical advantage, because the robot
could eventually learn to operate in any environment by a
continuous self-assessment of its own performance with-
out external controllers. Hence, our �tness criterion �
was function of three variables, directly measured on the
robot, as follows,
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Figure 4: Function surface for i = 0.4. Wheel speed values
have already been transformed into positive range where 0.5
is the point of direction inversion. Please note that this is
not a full picture of the �tness function maximized by the ge-
netic algorithm, which is instead n-dimensional (n = number
of neural network free parameters). Furthermore, it does not
take into account the physical characteristics of the environ-
ment.

� = V

�
1�

p
�v

�
(1� i) (1)

0 � V � 1

0 � �v � 1

0 � i � 1

where V is a measure of the average rotation speed of
the two wheels, �v is the algebraic di�erence between
the signed speed values of the wheels (positive is one
direction, negative the other) transformed into positive
values, and i is the activation value of the proximity sen-
sor with the highest activity. The function � has three
components: the �rst one is maximized by speed, the
second by straight direction, and the third by obstacle
avoidance. Since the robot has a circular shape and the
wheels can rotate in both directions, this function has a
symmetric surface with two equal maxima, each corre-
sponding to one motion direction (Figure 4).
The evolutionary training was a standard genetic al-

gorithm as described by Goldberg [7] with �tness scaling
and roulette wheel selection, biased mutations [15], and
one-point crossover (experiment parameters are given
in the Appendix). The neural network architecture
was �xed and consisted of a single layer of synaptic
weights from eight input units (clamped to the sensors)
to two output units (directly connected to the motors)
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Figure 5: Population average �tness and best individual �tness at each generation. Values are averaged over three runs (S.E.
displayed).

with mobile thresholds, logistic activation functions, and
discrete-time recurrent connections only within the out-
put layer. Given the small network size, each synaptic
connection and each threshold was coded as a 
oating
point number on the chromosome [21]. Each individ-
ual of a population was in turn decoded into the corre-
sponding neural networks, the input nodes connected to
the robot sensors, the output nodes to the motors, and
the robot was left free to move for a given number of
steps (motor actions) while its performance � was au-
tomatically recorded. Each motor action lasted 300 ms.
Between one individual and the next, a pair of random
velocities was applied to the wheels for 5 seconds. This
procedure was aimed at limiting the artifactual inheri-
tance of particular locations between adjacent individu-
als in the populations.

4.2 Results

Khepera genetically learns to navigate and avoid obsta-
cles in less than 100 generations (Figure 5), each gen-
eration taking approximatively 39 minutes. However,
around the 50th generation the best individuals already
exhibit a near to optimal behavior. Their navigation is
extremely smooth, they never bump into walls and cor-
ners, and try to keep a straight trajectory. This allows
them to perform complete laps of the corridor without
turning back. These results are highly reliable and have
been replicated in many runs of the experiment.

It is interesting to analyze a single run of the evolu-
tionary development of Khepera by looking at the values
of the three �tness components for the best individuals

in the population at each generation (Figure 6).

During the initial generations the best individuals are
those that move straight at very low velocities (about 2
mm/s). High oscillations of the sensory component in-
dicates that they cannot yet discriminate between walls
and empty spaces: it is still much up to individual "luck\
(starting location) to avoid crashing into an obstacle.
Most of the remaining individuals in the initial genera-
tions spend their life by rotating in place. Maximizing
the �tness function � means to �nd a balance among the
three components because none of them can assume the
maximum value without lowering one of the other two.
A stable balance is found around the 50th generation. In
the remaining 50 generations the robot increases only the
global motion speed. However, the global speed never
reaches the maximum value (80 mm/s), not even when
the evolutionary process is continued until the 200th gen-
eration. For all the best individuals, the robot speed
peaks at 48 mm/s when positioned in zones free of ob-
stacles. This self-adjustment of the maximum cruising
speed has an adaptive meaning. Since sensors and mo-
tors are updated only every 300 ms and many passages
in the environment are rather narrow, if Khepera had
moved faster it would have often crashed into walls with-
out the possibility to detect them. Thus, the system
has adapted its own behavior to the physical character-
istics of its own sensory system and of the environment
where it lives. We have tested some of the best indi-
viduals of the last generations in new environments with
a variety of objects (di�ering in shape, color, texture,
and light absorbency) and new light conditions (full sun-
light, new rooms with di�erent arti�cial light). We have
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also tested the best individuals with other robot bod-
ies (same model, but obviously with slight variations of
the sensor responses). In all these cases Khepera nav-
igates successfully without touching any of the objects
and trying to keep a straight trajectory. All the individ-
uals tested show a preferential turning direction which
solely depends on the initial conditions of the evolution-
ary run (initial weight values, interaction with the en-
vironment), but they can turn in both directions when
required by the environment.

4.3 Discussion

A basic characteristic of autonomous systems is the abil-
ity to self-regulate their own behavior in order to max-
imize the probability of survival and reproduction. In
this sense adaptation is function of the interaction be-
tween two variables, the physical properties of the envi-
ronment and the characteristics of the organism's body.
The success of any plan, strategy, or single action, de-
pends not only on the a�ordances of the environment,
but also on the capacity to detect them and adequately
respond. In nature we can observe a continuous evolu-
tionary co-adaptation of body structures and behavioral
repertoire. Although we cannot yet expect changes in
the hardware structure of an autonomous robot, still we
should observe self-selection of the behavioral strategies
that exploit at best the physical features of the robot's
body and sensory-motor apparatus. We have already
seen an example of such a behavioral adaptation in the
case of the speed self-regulation of our robot. Another
signi�cative example of autonomous adaptation is given
by the direction of motion.
Khepera has a perfectly circular and symmetric body
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Figure 7: IR sensors and motors layout in Khepera. Diameter
size is 55 mm, maximum speed in either direction is 80 mm/s.

shape and the wheels can rotate at equal speeds in both
directions. In terms of pure kinematics, thus, it is logi-
cal to expect that the robot will equally move in either
direction, depending on initial internal and external con-
ditions. However, in all our experiments, early during
the evolution the robots develop a frontal direction of
motion that corresponds to the side with more sensors
(Figure 7). The development of this frontal direction of
motion allows the robot to face obstacles with the side
that provides a �ner resolution and a larger visual angle.
Those individuals that move "backward\ are very likely
to get stuck in convex and sharp corners or fail to de-
tect a lateral collision with a wall; hence, they disappear
very soon from the population. (Analogous phenomena
of behavioral adaptation to the visual con�guration of
a simple simulated organism have been shown by [5].)
However, rear sensors do not go out of use. The neural
networks of the best individuals of the �nal generations
still make use of that information to change trajectory if
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Figure 8: State-space representation of the adaptation pro-
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ation. The arrow shows the direction of motion during evo-
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arrow tip in the last 20 generations. Axes range spans from
0 to 1 (only covered space is shown in the picture).

something is approaching the robot from the back. As for
any dynamic system, also in the case of evolved robots it
is important to understand and try to describe the state-
transition phase. But an autonomous system is not com-
pletely controllable and observable [12]. This holds also
for our robot, both because the dynamics and results of
the evolutionary process cannot be controlled, and be-
cause the inner functioning of the neural network, as we
will see later, is not linear and each state depends upon
a previous history of states. However, as in the case of
animals, the activity of an autonomous agent depends on
the state of the agent itself, such as its level of energy,
the perception of the environment, and the memory of
previous states. This analysis yields to the construction
of an n-dimensional state space, where the axes are pro-
vided by n state variables considered. This "state-space
approach\ has been used in ethology [13] to describe an-
imal behavior in quantitative terms, and can be applied
also to our agent. We can describe our agent as a point
in a three dimensional space given by the values of the
three �tness components and monitor its change in time.
Figure 8 is a state-space plot of the best individuals

of each generation during evolution. The adaptation
process is described by a reduction of oscillations and
by a gradual displacement toward a sub-region of this
space. This region of the adaptation space is compact
and bounded, and represents the stability conditions of
the system [12] that satisfy the survival criterion.
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Figure 9: State-space representation of the behavior of the
best individual of the last generation, when pulled apart from
its equilibrium state.

Our system is asymptotically stable because, when dis-
turbed (by the recombination and mutation operators
during the last 20 generations), it tends to stay within
the same adaptation zone. This holds also when we an-
alyze the behavior of a single individual. If we disturb
the system by pulling it away from its equilibrium state,
it will tend to return and stay in its original state (Fig-
ure 9). This analysis may be carried further on along
the lines of the "Adaptation Theorem\ of Sibly and Mc-
Farland [18], but there is not space enough here (we will
consider this issue in further detail with more complex
examples of evolved behaviors in another paper). A �nal
consideration is deserved by the comparison between our
agent and a distributed Braitenberg's vehicle designed
to go straight and avoid obstacles. Braitenberg's vehi-
cle (which has been implemented on Khepera too) is a
linear reactive system that, basically, when some sensors
are activated, gives more energy to the ipsilateral motor
and inhibits the controlateral one. The pattern of synap-
tic connections is symmetrical about the front axis. This
very simple system is very e�cient, but is gets stuck as
soon as two symmetric and controlateral sensors become
equally activated. In this case the total amount of energy
given to each motor is equal and tends to 0. Instead, our
agent has developed a pattern of synaptic connections
similar to Braitenberg's vehicle, but it has also accu-
rately exploited the recurrent connections at the output
layer and the non-linearities embedded in the activation
functions. The best individuals of the last generations
never get stuck in such cases because the state of the
motors is not uniquely de�ned by the current state of



the sensors, but also by the previous history of actions.

5 Conclusion

We have described and analyzed a working example
of an arti�cial autonomous agent. Our robot satis�es
most of the basic criteria that underlie the de�nition
of autonomous agents. Through the evolutionary pro-
cess Khepera has automatically and autonomously de-
veloped the optimal distributed control system to sur-
vive in the environment where it has been placed. The
role of the human experimenter has been indeed rather
small, speci�cally limited to formulate only the survival
criterion and the global structure of the net. We have
neither pre-designed the behaviors of the robot, nor have
intervened during evolution. The robot itself and alone
has developed -starting from a sort of tabula rasa - a set
of strategies and behaviors as a result of the adaptation
to the environment and its own body. Despite its sim-
ple components and the simple survival criterion, it is
di�cult to control and predict the robot behavior, due
to the non-linearities and feedback connections exploited
for optimal navigation and obstacle avoidance. We have
tried to describe our agent's behavior with quantitative
ethological tools, and we have also showed two emergent
phenomena such as speed self-regulation and frontal di-
rection. Our current work is aimed at using the same ap-
proach in more complex environments where the �tness
criterion is not anymore �xed by the experimenter, but is
the natural and logical result of the interaction between
the physical characteristics of the robot and the type
of environment. We have already obtained new signi�-
cant results where homing for battery recharge is purely
an emergent behavior. These data make us con�dent in
thinking that our approach is a valid methodology for
automatically creating complex autonomous agents. Fu-
ture work will enable evolvability and more 
exibility
(through a major adherence to biological plausibility) in
the neural network structure and will employ learning
during life as well.

Appendix

Genetic algorithm parameters:

Population size 80
Generation number 100
Crossover probability 0.1
Mutation probability 0.2
Mutation range �0:5
Initial weight range �0:5
Final weight range Not bounded
Life length 80 actions
Action duration 300 ms
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